Mhd Flow in a Channel Using New Combination of Order of Magnitude Technique and Hpm

نویسندگان

  • Morteza Abbasi
  • Davood Domiri Ganji
  • Mohammad Taeibi Rahni
چکیده

Original scientific paper The present work is concerned with the steady incompressible flow through a parallel plate channel with stretching walls under an externally applied magnetic field. The governing continuity and Navier-Stokes equations are reduced to a fourth order nonlinear differential equation by using vorticity definition and similarity solution transformation. The obtained equations are solved by applying the analytical homotopy perturbation method (HPM). The method is called order of magnitude suggested for simplifying series solution to finite expression that is useful in engineering problems. The results are verified by comparing with numerical solutions and demonstrate a good accuracy of the obtained analytical solutions. Profiles for velocity are presented for a range of plate velocity and magnetic field. The study shows that a back flow occurs near the center line of the channel and with the increase in strength of magnetic field, the back flow decreases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Investigation of MHD Jeffery–Hamel Nanofluid Flow in Non-Parallel Walls

In this paper, Homotopy perturbation method (HPM) has been applied to investigate the effect of magnetic field on Cu-water nanofluid flow in non-parallel walls. The validity of HPM solutions were verified by comparing with numerical results obtained using a fourth order Runge–Kutta method. Effects of active parameters on flow have been presented graphically. The results show that velocity i...

متن کامل

Dirichlet series and approximate analytical solutions of MHD flow over a linearly stretching ‎sheet

The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...

متن کامل

Effect of Variable Thermal Conductivity and the Inclined Magnetic Field on MHD Plane Poiseuille Flow in a Porous Channel with Non-Uniform Plate Temperature

The aim of this paper is to investigate the effect of the variable thermal conductivity and the inclined uniform magnetic field on the plane Poiseuille flow of viscous incompressible electrically conducting fluid between two porous plates Joule heating in the presence of a constant pressure gradient through non-uniform plate temperature. It is assumed that the fluid injection occurs at lower pl...

متن کامل

Entropy generation analysis of MHD forced convective flow through a horizontal porous channel

Entropy generation due to viscous incompressible MHD forced convective dissipative fluid flow through a horizontal channel of finite depth in the existence of an inclined magnetic field and heat source effect has been examined. The governing non-linear partial differential equations for momentum, energy and entropy generation are derived and solved by using the analytical method. In addition; t...

متن کامل

Entropy Generation In an Unsteady MHD Channel Flow With Navier Slip and Asymmetric Convective Cooling

The combined effects of magnetic field, Navier slip and convective heating on the entropy generation in a flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates under a constant pressure gradient have been examined. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient fluid. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014